Bihar Board Class 10th Maths Chapter 1 वास्तविक संख्याएँ Solution

 


Bihar Board Class 10 Maths वास्तविक संख्याएँ Ex 1.1

प्रश्न 1.
निम्नलिखित संख्याओं का महत्तम समापवर्तक (H.C.F.) ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए :
(i) 135 और 225
(ii) 196 और 38220
(iii) 867 और 255
हल
(i) दी गई संख्याएँ = 135 और 225
225 > 135
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1 Q1
Step I. दी गई संख्याओं 225 और 135 के लिए यूक्लिड विभाजन प्रमेयिका के प्रयोग से,
225 = (135 × 1) + 90 [∵ शेषफल 90 ≠ 0]
Step II. संख्याओं 135 और 90 के लिए यूक्लिड विभाजन प्रमेयिका के प्रयोग से,
135 = (90 × 1) + 45 [∵ शेषफल 45 ≠ 0]
Step III. संख्याओं 90 और 45 के लिए यूक्लिड विभाजन प्रमेयिका के प्रयोग से,
90 = (45 × 2) + 0 [∵ शेषफल = 0]
शेषफल शून्य है और भाजक = 45
अत: महत्तम समापवर्तक (H.C.F.) = 45

(ii) दी गई संख्याएँ = 196 और 38220
38220 > 196
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1 Q1.1
Step I. दी गई संख्याओं 196 व 38220 के लिए यूक्लिड विभाजन प्रमेयिका से,
38220 = (196 × 195) + 0 [∵ शेषफल = 0]
शेषफल शून्य है और भाजक = 196
अत: महत्तम समापवर्तक (H.C.F.) = 196

(iii) दी गई संख्याएँ = 867 और 255
867 > 255
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1 Q1.2
Step I. दी गई संख्याओं 867 और 255 के लिए यूक्लिड विभाजन प्रमेयिका से,
867 = (255 × 3) + 102 [∵ शेषफल 102 ≠ 0]
Step II. संख्याओं 255 व 102 के लिए यूक्लिड विभाजन प्रमेयिका से,
255 = (102 × 2) + 51 [∵ शेषफल 51 ≠ 0]
Step III. संख्याओं 102 व 51 के लिए यूक्लिड विभाजन प्रमेयिका से,
102 = (51 × 2) + 0 [∵ शेषफल = 0]
शेषफल शून्य है और भाजक = 51
अत: महत्तम समापवर्तक (H.C.F.) = 51

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1

प्रश्न 2.
दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होता है, जहाँ कोई पूर्णांक है।
हल
माना a एक विषम धन पूर्णांक है जो 6 से बड़ा है
और b एक धन पूर्णांक इस प्रकार है कि b = 6
तब, यूक्लिड की विभाजन प्रमेयिका से,
a = bq + r
a = 6q + r [∵ b = 6]
तब, r का मान 6 से कम होना चाहिए।
तब, r के सम्भव मान = 0, 1, 2, 3, 4, 5
तब, a = 6q + 0
a = 6q + 1
a = 6q + 2
a = 6q + 3
a = 6q + 4
a = 6q + 5
∵ a एक विषम संख्या है; अत: a = 6q + 0, 6q + 2 और 6q + 4 नहीं हो सकते क्योंकि ये राशियाँ 2 से विभाज्य हैं।
तब, विषम संख्या a = 6q + 1 या 6q + 3 या 6q + 5
अत: एक धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होगा।

प्रश्न 3.
किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तम्भों में मार्च करना है। उन स्तम्भों की अधिकतम संख्या क्या है जिसमें वे मार्च कर सकते हैं?
हल
स्तम्भों (lines) की अधिकतम संख्या टुकड़ी के सैनिकों की संख्या 616 और बैंड के सदस्यों की संख्या 32 का महत्तम समापवर्तक होगी।
तब, Step I. 616 और 32 के लिए यूक्लिड की विभाजन प्रमेयिका के प्रयोग से,
616 = (32 × 19) + 8 [∵ शेषफल 8 ≠ 0]
तब, Step II. 32 और 8 के लिए यूक्लिड की विभाजन प्रमेयिका से,
32 = (8 × 4) + 0 [∵ शेषफल = 0]
शेषफल शून्य है और भाजक 8 है।
महत्तम समापवर्तक (H.C.F.) = 8
अतः सेना 8 स्तम्भों में मार्च कर सकती है।

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1

प्रश्न 4.
यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि धनात्मक पूर्णाक का वर्ग किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है।
हल
माना a तथा b ऐसे दो धन पूर्णांक हैं कि a > b और b = 3
तब, यूक्लिड की विभाजन प्रमेयिका से,
a = 3b + r जबकि 0 ≤ r < 3
तब, के सम्भव मान = 0, 1, 2
तब, a = 3b + 0 ⇒ a = 3b + 1 ⇒ a = 3b + 2
तब, a2 = (3b + 0)2 ⇒ a2 = (3b + 1)2 ⇒ a2 = (3b + 2)2
यदी a2 = (3b + 0)2 तो a2 = 9b2 = 3. (3b2)
यदी a2 = (3b + 1)2 तो a2 = 9b2 + 6b + 1 = 3(3b2 + 2b) + 1
यदी a2 = (3b + 2)2 तो a2 = 9b2 + 12b + 4 = (9b2 + 12b + 3) + 1 = 3(3b2 + 4b + 1) + 1
a2 के सभी विस्तारों से स्पष्ट है कि a2, 3 से विभाजित होता है और शेषफल शून्य बचता है या 1 बचता है।
a2 = 3m + 0 ⇒ a2 = 3m + 1
अतः किसी धन पूर्णांक का वर्ग किसी पूर्णांकm के लिए 3m या 3m + 1 के रूप का होता है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1

प्रश्न 5.
यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।
हल
माना a तथा b दो ऐसे धन पूर्णांक हैं कि a > b और b = 9
तब, यूक्लिड की विभाजन प्रमेयिका से, a = 9b + r
तब, r का मान 9 से कम होना चाहिए।
तब, r के सम्भव मान = 0, 1, 2, 3, 4, 5, 6, 7, 8
तब, a = 9b + 0
a = 9b + 1
a = 9b + 2
a = 9b + 3
a = 9b + 4
a = 9b + 5
a = 9b + 6
a = 9b + 7
a = 9b + 8
जब a = 9b + 0 हो तो a3 = (3b + 0)3 = 27b3 ⇒ a3 = 9(3b3) ……..(1)
जब a = 9b + 1 हो तो a3 = (3b + 1)3
⇒ a3 = (3b)3 + 3.3b.1 (3b + 1) + (1)3
⇒ a3 = (27b3 + 27b2 + 9b) + 1
⇒ a3 = 9[3b3 + 3b2 + b] + 1 …….. (2)
जब a = 9b + 2 हो तो a3 = (3b + 2)3
⇒ a3 = (3b)3 + 3.3b.2 (3b + 2) + (2)3
⇒ a3 = [27b3 + 54b2 + 36b] + 8
⇒ a3 = [27b3 + 18b (3b + 2)] + 8
⇒ a3 = 9[3b3 + 6b2 + 4b] + 8 ……. (3)
तब, समीकरण (1), (2) व (3) को ध्यान से देखिए कि ये 9 से विभाज्य हैं।
तब, इन्हें क्रमश: a3 = 9m,
या a3 = 9m + 1,
या a3 = 9m + 8 लिखा जा सकता है।
अत: किसी धन पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।
इति सिद्धम्


Bihar Board Class 10 Maths वास्तविक संख्याएँ Ex 1.2

प्रश्न 1.
निम्नलिखित संख्याओं को अभाज्य गुणनखण्डों के गुणनफल के रूप में व्यक्त कीजिए-
(i) 140
(ii) 156
(iii) 3825
(iv) 5005
(v) 7429
हल
(i) 140 = 2 × 2 × 5 × 7 = (2)2 × 5 × 7
अत: 140 = 22 × 5 × 7
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2 Q1

(ii) 156 = 2 × 2 × 3 × 13 = (2)2 × 3 × 13
अत: 156 = 22 × 3 × 13
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2 Q1.1

(iii) 3825 = 3 × 3 × 5 × 5 × 17 = (3)2 × (5)2 × 17
अतः 3825 = 32 × 52 × 17
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2 Q1.2

(iv) 5005 = 5 × 7 × 11 × 13
अतः 5005 = 5 × 7 × 11 × 13
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2 Q1.3

(v) 7429 = 17 × 19 × 23
अतः 7429 = 17 × 19 × 23
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2 Q1.4

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2

प्रश्न 2.
पूर्णांकों के निम्नलिखित युग्मों के महत्तम समापवर्तक (H.C.F.) और लघुत्तम समापवर्त्य (L.C.M.) ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = H.C.F. × L.C.M. है।
(i) 26 और 91
(ii) 510 और 92
(iii) 336 और 54
हल
(i) 26 = 21 × 131
और 91 = 71 × 131
26 और 91 के उभयनिष्ठ अभाज्य गुणनखण्डों का (न्यूनतम घातों में) गुणनफल = 131 = 13
तथा 26 और 91 के सभी अभाज्य गुणनखण्डों का (अधिकतम घातों में)
गुणनफल = 21 × 71 × 131 = 2 × 7 × 13 = 182
अतः महत्तम समापवर्तक (H.C.F.) = 13 तथा लघुत्तम समापवर्त्य (L.C.M.) = 182
संख्याओं का गुणनफल = 26 × 91 = 2366
तथा H.C.F. × L.C.M. = 13 × 182 = 2366
अत: संख्याओं का गुणनफल = H.C.F. × L.C.M.
इति सिद्धम्

(ii) 92 = 2 × 2 × 23 = 22 × 231
और 510 = 2 × 3 × 5 × 17 = 21 × 31 × 51 × 171
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2 Q2
92 और 510 के उभयनिष्ठ अभाज्य गुणनखण्डों का (न्यूनतम घातों में)
गुणनफल = 21 = 2
तथा 92 और 510 के सभी अभाज्य गुणनखण्डों का (अधिकतम घातों में) गुणनफल
= 22 × 31 × 51 × 171 × 231
= 23460
अत: महत्तम समापवर्तक (H.C.F.) = 2
तथा लघुत्तम समापवर्त्य (L.C.M.) = 23460
संख्याओं का गुणनफल = 92 × 510 = 46920
तथा H.C.F. × L.C.M. = 2 × 23460 = 46920
अत: संख्याओं का गुणनफल = H.C.F. × L.C.M.
इति सिद्धम्

(iii) 54 = 2 × 3 × 3 × 3 = 21 × 33
और 336 = 2 × 2 × 2 × 2 × 3 × 7 = 24 × 31 × 71
तब, दोनों संख्याओं के उभयनिष्ठ अभाज्य गुणनखण्डों का (न्यूनतम घातों में) गुणनफल = 21 × 31 = 6
तथा दोनों संख्याओं के सभी अभाज्य गुणनखण्डों का (अधिकतम घातों में) गुणनफल
= 24 × 33 × 7
= 16 × 27 × 7
= 3024
अत: महत्तम समापवर्तक (H.C.F.) = 6
तथा लघुत्तम समापवर्त्य (L.C.M.) = 3024
संख्याओं का गुणनफल = 54 × 336 =18144
तथा H.C.F. × L.C.M. = 6 × 3024 = 18144
अत: संख्याओं का गुणनफल = H.C.F. × L.C.M.
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2

प्रश्न 3.
अभाज्य गुणनखण्डन विधि द्वारा निम्नलिखित पूर्णांकों के H.C.F. और L.C.M. ज्ञात कीजिए :
(i) 12, 15 और 21
(ii) 17, 23 और 29
(iii) 8, 9 और 25
हल
(i) 12 = 2 × 2 × 3 = 22 × 31
15 = 3 × 5 = 31 × 51
और 21 = 3 × 7 = 31 × 71
संख्याओं के सार्वनिष्ठ अभाज्य गुणनखण्डों का (न्यूनतम घातों में) गुणनफल = 31 = 3
तथा संख्याओं के सभी अभाज्य गुणनखण्डों का (अधिकतम घातों में) गुणनफल
= 22 × 31 × 51 × 71
= 4 × 3 × 5 × 7
= 420
अतः म० स० (H.C.F.) = 3
तथा ल० स० (L.C.M.) = 420

(ii) 17 = 1 × 17 = 1 × 171
23 = 1 × 23 = 1 × 231
और 29 = 1 × 29 = 1 × 291
सभी संख्याओं के सार्वनिष्ठ अभाज्य गुणनखण्डों का (न्यूनतम घातों में) गुणनफल = 1
तथा सभी संख्याओं के सभी अभाज्य गुणनखण्डों का (अधिकतम घातों में) गुणनफल
= 171 × 231 × 291
= 17 × 23 × 29
= 11339
अत: म० स० (H.C.F.) = 1
तथा ल० स० (L.C.M.) = 11339

(iii) 8 = 2 × 2 × 2 = 23
9 = 3 × 3 = 32
और 25 = 5 × 5 = 52
1 के अतिरिक्त सभी संख्याओं का कोई सार्वनिष्ठ अभाज्य गुणनखण्ड नहीं है जिससे म० स० = 1
और ल० स० = 23 × 32 × 52
= 8 × 9 × 25
= 1800
अत: म० स० (H.C.F.) = 1
तथा ल० स० (L.C.M.) = 1800

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2

प्रश्न 4.
H.C.F. (306, 657) = 9 दिया है। L.C.M. (306, 657) ज्ञात कीजिए।
हल
दिया है, H.C.F. (306, 657) = 9 ⇒ 306 और 657 का H.C.F. = 9
सूत्र- संख्याओं का गुणनफल = H.C.F. × L.C.M. से,
306 × 657 = 9 × L.C.M.
L.C.M. = 306×6579
= 306 × 73
= 22338
अत: L.C.M. = 22338

प्रश्न 5.
जाँच कीजिए कि क्या किसी प्राकृत संख्या n के लिए 6n अंक 0 पर समाप्त हो सकती है?
हल
यदि 6n (जहाँ, n एक प्राकृत संख्या है) का मान एक ऐसी संख्या है जिसमें इकाई का अंक शून्य है तो 6n, 5 से विभाज्य होगा।
6n = (2 × 3)n जिसका आशय है कि 6n के अभाज्य गुणनखण्डों में 2 या 3 के अतिरिक्त कोई अन्य अभाज्य गुणनखण्ड नहीं है।
6n का कोई गुणनखण्ड 5 नहीं हो सकता।
अत: 6n, अंक शून्य पर समाप्त नहीं हो सकती।

प्रश्न 6.
व्याख्या कीजिए कि 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्याएँ क्यों हैं?
हल
7 × 11 × 13 + 13 = 1001 + 13 = 1014 = 2 × 3 × 13 × 13
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2 Q6
दी हुई संख्या (7 × 11 × 13 + 13) को अभाज्य गुणनखण्डों के गुणनफल (2 × 3 × 13 × 13) के रूप में व्यक्त किया जा सकता है।
अतः अंकगणित की आधारभूत प्रमेय के अनुसार (7 × 11 × 13 + 13) एक भाज्य संख्या है।
इसी प्रकार, 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 = 5040 + 5 = 5045 = 5 × 1009
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2 Q6.1
दी गई संख्या (7 × 6 × 5 × 4 × 3 × 2 × 1 + 5) को 5 × 1009
अभाज्य गुणनखण्डों के गुणनफल के रूप में लिखा जा सकता है।
अत: संख्या (7 × 6 × 5 × 4 × 3 × 2 × 1 + 5) अंकगणित की आधारभूत प्रमेय के अनुसार भाज्य है।

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2

प्रश्न 7.
किसी खेल के मैदान के चारों ओर एक वृत्ताकार पथ है। इस मैदान का एक चक्कर लगाने में सोनिया को 18 मिनट लगते हैं, जबकि इसी मैदान का एक चक्कर लगाने में रवि को 12 मिनट लगते हैं। मान लीजिए कि वे दोनों एक ही स्थान और एक ही समय पर चलना प्रारम्भ करके एक ही दिशा में चलते हैं। कितने समय बाद वे पुनः प्रारम्भिक स्थान पर मिलेंगे?
हल
सोनिया और रवि जिस स्थान से चले थे उसी स्थान पर पुनः मिलने के लिए उन्हें वह समय चाहिए जो 12 मिनट और 18 मिनट दोनों समयों का एक ही गुणज हो और न्यूनतम हो। इसके लिए हमें 12 और 18 का लघुत्तम समापवर्त्य (L.C.M.) ज्ञात करना होगा।
12 = 2 × 2 × 3 = (2)2 × 3 तथा 18 = 2 × 3 × 3 = 2 × (3)2
दोनों संख्याओं में अभाज्य गुणनखण्ड 2 की अधिकतम घात का अभाज्य गुणनखण्ड = (2)2
और दोनों संख्याओं में अभाज्य गुणनखण्ड 3 की अधिकतम घात का अभाज्य गुणनखण्ड = (3)2
लघत्तम समापवर्त्य (L.C.M.) = (2)2 × (3)2 = 4 × 9 = 36
अतः वे 36 मिनट बाद पुनः प्रारम्भिक स्थान पर मिलेंगे।


Bihar Board Class 10 Maths वास्तविक संख्याएँ Ex 1.3

प्रश्न 1.
सिद्ध कीजिए कि √5 एक अपरिमेय संख्या है।
हल
कल्पना कीजिए कि √5 अपरिमेय न होकर एक परिमेय संख्या है।
तब, √5 = pq होना चाहिए जबकि q ≠ 0 तथा p व q पूर्ण संख्याएँ हैं।
माना p और q में 1 के अतिरिक्त कोई अभाज्य गुणनखण्ड सार्वनिष्ठ नहीं है।
अब, √5 = pq
p = √5q
दोनों पक्षों का वर्ग करने पर, p2 = 5q2
p2, संख्या 5 से विभाज्य है।
p भी संख्या 5 से विभाज्य है।
अब, p, 5 से विभाज्य है, तब माना कि p = 5r
दोनों पक्षों का वर्ग करने पर, p2 = 25r2
परन्तु हमें यह भी ज्ञात है कि p2 = 5q2
5q2 = 25r2 ⇒ q2 = 5r2
तब, q2, 5 से विभाज्य होगा।
तब, q भी 5 से विभाज्य होगा।
p भी 5 से विभाज्य है और q भी 5 से विभाज्य है।
5, p और q का सार्वनिष्ठ अभाज्य गुणनखण्ड है (जो 1 के अतिरिक्त है)।
यह एक विरोधाभास है क्योंकि हमारी मान्यता के अनुसार p और में (1 के अतिरिक्त) कोई अभाज्य गुणनखण्ड सार्वनिष्ठ नहीं है।
यह संकेत करता है कि हमारी कल्पना “√5 परिमेय संख्या है” असंगत एवं त्रुटिपूर्ण है।
अत: √5 एक अपरिमेय संख्या है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.3

प्रश्न 2.
सिद्ध कीजिए कि 3 + 2√5 एक अपरिमेय संख्या है।
हल
माना 3 + 2√5 अपरिमेय नहीं, परिमेय संख्या है।
तब, 3 + 2√5 = pq होना चाहिए जबकि q ≠ 0 और p तथा q धन पूर्णांक हैं।
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.3 Q2
√5 भी एक परिमेय संख्या है परन्तु यह सर्वमान्य तथ्य है कि √5 परिमेय नहीं, अपरिमेय संख्या है। तब यहाँ विरोधाभास है।
इस विरोधाभास का कारण हमारी कल्पना “3 + 2√5 को परिमेय मानना” ही है।
इसलिए 3 + 2√5 परिमेय नहीं है।
अत: दी गई संख्या 3 + 2√5 अपरिमेय संख्या है।
इति सिद्धम्

प्रश्न 3.
सिद्ध कीजिए कि निम्नलिखित संख्याएँ अपरिमेय हैं
(i) 12
(ii) 7√5
(iii) 6 + √2
हल
(i) माना दी गई संख्या 12 परिमेय है।
12=pq (जहाँ q ≠ 0 और p तथा q धन पूर्णांक हैं)
माना p तथा q में 1 के अतिरिक्त कोई सार्वनिष्ठ अभाज्य गुणनखण्ड नहीं है।
12=pqp2q2=12
⇒ q2 = 2p2 ……. (1)
q2, 2 से विभाज्य है।
q भी 2 से विभाज्य है।
तब, माना q = 2r
दोनों पक्षों का वर्ग करने पर
q2 = 4r2 ……… (2)
समी० (1) और (2) से,
2p2 = 4r2
⇒ p2 = 2r2
p2, संख्या 2 से विभाज्य है।
p भी 2 से विभाज्य है।
तब, p तथा व दोनों 2 से विभाज्य हैं।
p तथा 4 में 1 के अतिरिक्त अभाज्य गुणनखण्ड 2 भी सार्वनिष्ठ है जो कि हमारी मान्यता के विपरीत है।
इस विरोधाभास का कारण हमारी मान्यता कि “12 = परिमेय है” का असंगत एवं त्रुटिपूर्ण होना है।
12 परिमेय नहीं है।
अत: 12 अपरिमेय संख्या है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.3

(ii) कल्पना कीजिए कि संख्या 7√5 परिमेय है।
तब, 7√5 = pq (जहाँ q ≠ 0 और p तथा q धन पूर्णांक हैं)
pq = 7√5 या 17pq=5
pq परिमेय संख्या है तो 17pq भी परिमेय संख्या होगी।
अब, 17pq परिमेय संख्या है और 17pq = √5
तब, √5 भी परिमेय संख्या होनी चाहिए।
परन्तु यह तथ्य सर्वमान्य है कि √5 परिमेय संख्या नहीं है। यहाँ एक विरोधाभास है जिसका कारण हमारी मान्यता कि “संख्या 7√5 परिमेय है” ही है जो असंगत और त्रुटिपूर्ण है।
अत: 7√5 एक अपरिमेय संख्या है।
इति सिद्धम्

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.3

(iii) कल्पना कीजिए कि संख्या 6 + √2 परिमेय है।
तब, 6 + √2 = pq (जहाँ q ≠ 0 तथा p तथा q धन पूर्णांक हैं)
6 + √2 = pq
√2 = pq – 6
pq परिमेय है; अतः (pq – 6) भी परिमेय होगी।
(pq – 6) = √2 तथा (pq – 6) परिमेय है।
√2 भी परिमेय संख्या है।
परन्तु यह तथ्य कि “√2 परिमेय संख्या है” असंगत एवं त्रुटिपूर्ण तथा अमान्य है जिसके लिए हमारे द्वारा की गई गलत कल्पना ही उत्तरदायी है। संख्या 6 + √2 परिमेय नहीं हो सकती।
अतः संख्या 6 + √2 अपरिमेय होगी।
इति सिद्धम्



Bihar Board Class 10 Maths वास्तविक संख्याएँ Ex 1.4

प्रश्न 1.
बिना लम्बी विभाजन प्रक्रिया किए बताइए कि निम्नलिखित परिमेय संख्याओं के दशमलव प्रसार सांत हैं या असांत आवर्ती हैं-
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4 Q1.4
हल
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4 Q1
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4 Q1.1
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4 Q1.2
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4 Q1.3

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4

प्रश्न 2.
प्रश्न (1) में दी गई उन परिमेय संख्याओं के दशमलव प्रसारों को लिखिए जो सांत हैं-
हल
सांत दशमलव प्रसार वाली परिमेय संख्याएँ-
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4 Q2
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4 Q2.1
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4 Q2.2
Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4 Q2.3

Bihar Board Class 10 Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.4

प्रश्न 3.
कुछ वास्तविक संख्याओं के दशमलव प्रसार नीचे दर्शाए गए हैं। प्रत्येक स्थिति के लिए निर्धारित कीजिए कि यह संख्या परिमेय संख्या है या नहीं। यदि यह परिमेय संख्या है और के रूप की है तो के अभाज्य गुणनखण्डों के बारे में आप क्या कह सकते हैं?
(i) 43.123456789
(ii) 0.120120012000120000……..
(iii) 43.123456789¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
हल
(i) 43.123456789 = 431234567891000000000 जो कि pq के रूप की है।
अत: 43.123456789 एक परिमेय संख्या है।
q = 1000000000 = (10)9 = (2 × 5)9 = 29 × 59
अत: के अभाज्य गुणनखण्ड 2 या 5 या दोनों हैं।

(ii) 0.120120012000120000…….. का दशमलव प्रसार असांत एवं अनावर्ती है और इसे pq के रूप में नहीं लिखा जा सकता जिससे यह परिमेय नहीं है।

(iii) 43.123456789¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ = 43.123456789 123456789 123456789……..
दी गई संख्या का दशमलव प्रसार असांत एवं आवर्ती है
दी गई संख्या को परिमेय अर्थात् pq के रूप में बदलना सम्भव है।
तब, q के अभाज्य गुणनखण्ड 2 और 5 के अतिरिक्त और भी अभाज्य धन पूर्णांक सम्भव हैं।
अतः दी गई संख्या परिमेय है और q के अभाज्य गुणनखण्ड 2 अथवा 5 के अतिरिक्त भी हैं।

0 Comments