अतिलघु उत्तरीय प्रश्न
प्रश्न 1.
एक थैले में 4 लाल तथा 6 काली गेंदें हैं। थैले में से एक गेंद यदृच्छया निकाली गई। एक काली गेंद निकलने की प्रायिकता ज्ञात कीजिए।
हल
जब थैले से यदृच्छया एक गेंद बाहर निकाली जाती है तो निकाली गई गेंद के लाल होने की कुल सम्भावनाएँ 4 हैं तथा गेंद काली होने की सम्भव घटनाएँ 6 हो सकती हैं।
कुल सम्भावित परिणाम = 6 + 4 = 10
और गेंद काली होने के सम्भव परिणाम = 6
अत: निकाली गई गेंद काले रंग की होने की प्रायिकता =
प्रश्न 2.
एक पासे को एक बार फेंका जाता है। एक सम संख्या प्राप्त करने की प्रायिकता ज्ञात कीजिए।
हल
पासे पर सम संख्या (2, 4, 6) = 3
कुल संख्या = 6
सम संख्या आने की प्रायिकता =
प्रश्न 3.
एक थैले में एक से लेकर दस अंक तक के दस टिकट हैं, थैले से यदृच्छया एक टिकट निकाला जाता है। निकाले गए टिकट पर विषम अंक होने की प्रायिकता ज्ञात कीजिए।
हल
थैले में 1 से लेकर 10 अंक तक के टिकट हैं।
n(S) = 10
विषम अंक 1, 3, 5, 7, 9 होंगे।
n(E) = 5
विषम अंक प्राप्त होने की प्रायिकता =
प्रश्न 4.
अच्छे प्रकार से फेंटी गई 52 पत्तों की एक गड्डी में से एक पत्ता निकाला जाता है। उस पत्ते के इक्का होने की प्रायिकता ज्ञात कीजिए।
हल
गड्डी में कुल 52 पत्ते हैं
अत: गड्डी में से 1 पत्ता निकालने पर कुल सम्भव परिणाम = 52
52 पत्तों में इक्के केवल 4 हैं।
इक्का निकालने के अनुकूल परिणामों की संख्या = 4
पत्ते के इक्का होने की प्रायिकता
प्रश्न 5.
किसी घटना के घटित होने की प्रायिकता 0.7 है तो उस घटना के न घटित होने की प्रायिकता ज्ञात कीजिए।
हल
घटना के न घटित होने की प्रायिकता = 1 – घटना के घटित होने की प्रायिकता
= 1 – 0.7
= 0.3
प्रश्न 6.
एक असम्भव घटना की प्रायिकता कितनी होती है?
उत्तर
असम्भव घटना की प्रायिकता शून्य होती है।
प्रश्न 7.
एक निश्चित घटना की प्रायिकता कितनी होगी?
उत्तर
निश्चित घटना की प्रायिकता 1 होगी।
लघु उत्तरीय प्रश्न
प्रश्न 1.
एक थैले में 6 काली, 7 लाल तथा 2 सफेद गेंदे हैं। इस थैले में से एक गेंद यदृच्छया निकाली जाती है, प्रायिकता ज्ञात कीजिए कि निकाली गयी गेंदे (i) काली या सफेद हो, (ii) लाल हो।
हल
थैले में 6 काली, 7 लाल तथा 2 सफेद गेंदे हैं।
(i) कुल गेंद = 6 + 7 + 2 = 15
काली गेंद = 6
काली गेंद निकालने की प्रायिकता =
सफेद गेंद = 2
सफेद गेंद निकालने की प्रायिकता =
अतः काली या सफेद गेंद निकालने की प्रायिकता =
(ii) थैले में लाल गेंद = 7
लाल गेंद निकालने की प्रायिकता =
प्रश्न 2.
दो सिक्के एक साथ उछाले जाते हैं। निम्नलिखित के प्राप्ति की प्रायिकता ज्ञात कीजिए :
(i) दो शीर्ष,
(ii) कम-से-कम एक शीर्ष।
हल
यदि शीर्ष को H तथा पुच्छ को T से प्रदर्शित किया जाए तो दो सिक्कों को एक साथ उछालने पर,
(i) प्रतिदर्श समष्टि S = {HH, HT, TH, TT}
n(S) = 4
दोनों शीर्ष एक बार (H, H)
दो शीर्ष आने की प्रायिकता =
(ii) कम-से-कम एक शीर्ष n(E) = 3 {HT, TH, TT}
कम-से-कम एक शीर्ष आने की प्रायिकता =
प्रश्न 3.
एक कक्षा में 18 लड़कियाँ तथा 16 लड़के हैं। कक्षा अध्यापिका को एक विद्यार्थी कक्षा प्रतिनिधि के रूप में चुनना है। वह प्रत्येक विद्यार्थी का नाम एक अलग कार्ड पर लिखती है, जबकि कार्ड एक जैसे हैं। फिर वह इन कार्यों को एक थैले में डालकर अच्छी तरह हिलाती है और तब थैले में से एक कार्ड निकालती है। इसकी क्या प्रायिकता है कि कार्ड पर लिखा हुआ नाम
(i) लड़की का है?
(ii) लड़के का है?
हल
(i) कार्ड एक जैसे हैं तथा कार्ड निकालने से पहले उन्हें अच्छी तरह हिलाया गया है, अत: सभी परिणाम समप्रायिक हैं।
लड़कियों का नाम लिखे कार्यों की संख्या = 18
तथा लड़कों का नाम लिखे कार्डों की संख्या = 16
एक कार्ड निकालने पर कुल परिणामों की संख्या = 18 + 16 = 34
जबकि लड़की के नाम का कार्ड निकलने के अनुकूल परिणामों की संख्या = 18
लड़की का कार्ड निकलने की प्रायिकता =
(ii) अब लड़के का कार्ड निकलने के अनुकूल परिणामों की संख्या = 16
लड़के का कार्ड निकलने की प्रायिकता =
प्रश्न 4.
दो सिक्के एक साथ उछाले जाते हैं। निम्नलिखित के प्राप्त होने की प्रायिकता क्या है?
(i) कम-से-कम एक पट
(ii) अधिक-से-अधिक दो चित।
हल
दो सिक्कों की उछाल में प्रतिदर्श समष्टि
S = {HH, HT, TH, TT}
(i) कम-से-कम एक पट आने की घटना
E1 = {TH, HT, TT}
इसकी प्रायिकता P(E1) =
(ii) अधिक-से-अधिक दो चित आने की घटना
E2 = {HH, HT, TH, TT} = S
अतः अभीष्ट प्रायिकता P(E2) =
प्रश्न 5.
एक थैले में 2 लाल, 3 सफेद और 4 नीले कंचे हैं। यदि इस थैले में से एक कंचा यदृच्छया निकाला जाता है तो इसकी क्या प्रायिकता होगी कि यह कंचा-
(i) सफेद है?
(ii) लाल है?
हल
थैले में कुल कंचे = 2 + 3 + 4 = 9 = n(S)
(i) सफेद कंचे = 3 = n(E1)
सफेद कंचा निकालने की प्रायिकता =
(ii) थैले में लाल कंचे = 2 = n(E2)
लाल कंचा निकालने की प्रायिकता =
प्रश्न 6.
एक बॉक्स में 20 गेंदें हैं, जिनमें 1, 2, 3, ….., 20 अंक लिखे गए हैं। बॉक्स में से एक गेंद निकाली जाती है। प्रायिकता ज्ञात कीजिए कि गेंद पर लिखी संख्या
(i) 3 से विभाज्य है
(ii) 3 से विभाज्य नहीं है।
हल
(i) गेंदों की कुल संख्या = 20
यदि एक गेंद यदृच्छया निकाली जाती है तो कुल सम्भव परिणाम = (1, 2, 3,…., 20) = 20
इन परिणामों में से 3 से विभाज्य संख्याएँ = (3, 6, 9, 12, 15, 18) = 6
अत: गेंद पर लिखी संख्या के 3 से विभाज्य होने की प्रायिकता =
(ii) प्रायिकता कि गेंद पर लिखी संख्या 3 से विभाज्य है + प्रायिकता कि गेंद पर लिखी संख्या 3 से विभाज्य नहीं है = 1
⇒
⇒ प्रायिकता कि गेंद पर लिखी संख्या 3 से विभाज्य नहीं है = 1 –
दीर्घ उत्तरीय प्रश्न
प्रश्न 1.
एक पेटी में 30 डिस्क हैं जिन पर 1 से 30 तक की संख्याएँ अंकित हैं। यदि इस पेटी में से एक डिस्क यदृच्छया निकाली जाती है तो इसकी प्रायिकता ज्ञात कीजिए कि इस डिस्क पर अंकित होगी :
(i) दो अंकों की एक संख्या
(ii) एक पूर्ण वर्ग संख्या।
हल
विश्लेषण : चित्र में 30 डिस्क दिखाई गई हैं प्रत्येक डिस्क पर 1 से 30 तक की कोई एक संख्या अंकित है। कोई संख्या न तो विलुप्त है और न दोहराई गई (दुबारा लिखी गई) है।
इन डिस्क्स को एक पेटी में रखा गया है।
पेटी में से एक डिस्क यदृच्छया निकाली जाती है।
डिस्क पर अंकित संख्या के लिए,
कुल सम्भावित परिणाम = 30
(i) यदृच्छया चुनी डिस्क पर अंकित संख्या दो अंकों की हो; इस घटना के अनुकूल परिणाम = 21
दो अंकों वाली संख्याएँ = 21
अत: निकाली डिस्क पर दो अंकों वाली संख्या अंकित होने की प्रायिकता
(ii) यदृच्छया चुनी डिस्क पर पूर्ण वर्ग संख्या अंकित हो। घटना के अनुकूल परिणाम = 1, 4, 9, 16, 25, कुल 5 परिणाम हैं।
अत: निकाली गई डिस्क पर पूर्ण वर्ग संख्या अंकित होने की प्रायिकता
प्रश्न 2.
कार्ड, जिन पर 5 से 50 तक की संख्याएँ अंकित हैं, एक बॉक्स में रखकर अच्छी तरह से मिलाए जाते हैं। तब बॉक्स में से एक कार्ड यदच्छया निकाला गया। निकाले गए कार्ड पर निम्न के आने की प्रायिकता ज्ञात कीजिए :
(i) 10 से छोटी एक अभाज्य संख्या।
(ii) एक पूर्ण वर्ग संख्या।
हल
बॉक्स में रखे कार्ड्स पर अंकित कुल संख्याएँ प्रतिदर्श
∴ n(S) = 46
प्रतिदर्श समष्टि S में,
10 से छोटी अभाज्य संख्याएँ = 5 व 7 और ⇒ n(A) = 2
पूर्ण वर्ग संख्याएँ = 9, 16, 25, 36, 49 ⇒ n(E) = 5
(i) निकाले गए कार्ड पर 10 से छोटी अभाज्य संख्या अंकित होने की घटना A हो तो n(A) = 2
अत: बॉक्स से यदृच्छया निकाले गए कार्ड पर 10 से छोटी संख्या अंकित होने की प्रायिकता
(ii) जब बॉक्स में से यदृच्छया एक कार्ड निकाला जाए और निकाले गए कार्ड पर अंकित संख्या के पूर्ण वर्ग होने की घटना E हो तो n(E) = 5
अतः निकाले गए कार्ड पर पूर्ण वर्ग संख्या अंकित होने की प्रायिकता,
प्रश्न 3.
एक पिग्गी बैंक (Piggy Bank) में, ₹ 2 के 30 सिक्के, ₹ 5 के 20 सिक्के और ₹ 10 के 10 सिक्के हैं। यदि पिग्गी बैंक को हिलाकर उल्टा करने पर कोई एक सिक्का गिरने के परिणाम समप्रायिक हैं तो इसकी क्या प्रायिकता है कि वह गिरा हुआ सिक्का
(i) ₹ 2 का होगा?
(ii) ₹ 10 का नहीं होगा?
हल
₹ 2 के सिक्कों की संख्या = 30
₹ 5 के सिक्कों की संख्या = 20
₹ 10 के सिक्कों की संख्या = 10
पिग्गी बैंक को अच्छी तरह हिलाकर उल्टा करने पर 1 सिक्का गिरने की घटना के सभी परिणाम सम-सम्भावी हैं, तब
(i) यदि गिरा हुआ सिक्का ₹ 2 का होने की घटना H हो, तो
घटना H के अनुकूल परिणाम = 30
तथा कुल सम्भव परिणाम = 30 + 20 + 10 = 60
अत: गिरा हुआ सिक्का ₹ 2 का हो, इसकी प्रायिकता
P(H) =
(ii) गिरा हुआ सिक्का ₹ 10 का होने के अनुकूल परिणाम 10 हैं।
गिरा हुआ सिक्का ₹ 10 का होने की प्रायिकता =
अत: गिरा हुआ सिक्का ₹ 10 का न होने की प्रायिकता = 1 –
0 Comments