अतिलघु उत्तरीय प्रश्न
प्रश्न 1.
दिए गए चित्र में, DE, BC के समान्तर है तथा AD = 2 cm, BD = 3 cm , त्रिभुज ABC तथा त्रिभुज ADE के क्षेत्रफल में अनुपात ज्ञात कीजिए।
हल
प्रश्न 2.
चित्र में, EF || BC, यदि AE : BE = 4 : 1 और CF = 1.5 cm हो, तो AF की लम्बाई क्या होगी?
हल
EF || BC
⇒
⇒ AF = 4 × 1.5 = 6.0 cm
प्रश्न 3.
दो समरूप त्रिभुजों की भुजाएँ 4 : 5 के अनुपात में हैं। उनके क्षेत्रफलों का अनुपात ज्ञात कीजिए।
हल
क्षेत्रफलों का अनुपात = संगत भुजाओं के वर्गों का अनुपात = (4)2 : (5)2 = 16 : 25
प्रश्न 4.
आकृति में,
हल
दिया है,
आकृति से, ∠AOD = ∠BOC (शीर्षाभिमुख कोण)
अतः ∆AOD ~ ∆COB
अर्थात् ∆AOD ~ ∆COB सिद्ध करने के लिए किसी भी अन्य सूचना की आवश्यकता नहीं है।
प्रश्न 5.
बौधायन प्रमेय का कथन लिखिए।
हल
प्रमेय : समकोण त्रिभुज में (कर्ण)2 = (आधार)2 + (लम्ब)2 होता है।
प्रश्न 6.
सिद्ध कीजिए कि भुजाएँ 13 cm, 12 cm व 5 cm एक समकोण त्रिभुज की भुजाएँ हैं।
हल
माना a = 13 cm, b = 12 cm तथा c = 5 cm
तब, a2 = (13)2 = 169
तथा b2 + c2 = (12)2 + (5)2 = 144 + 25 = 169
∴ a2 = b2 + c2
अर्थात् (सबसे बड़ी भुजा)2 = शेष दोनों भुजाओं के वर्गों का योग
अतः दी गई भुजाएँ एक समकोण त्रिभुज की भुजाएँ हैं।
इति सिद्धम्
प्रश्न 7.
आकृति में, DE || BC तो EC ज्ञात कीजिए।
हल
∆ABC में, DE || BC
अत: EC की लम्बाई = 4 cm
लघु उत्तरीय प्रश्न
प्रश्न 1.
आकृति में, ∠A = 90°, BD = DC तो पाइथागोरस प्रमेय से सिद्ध कीजिए AD =
हल
दिया है : ∆ABC में, ∠A = 90°
BD = DC
AD ⊥ BC
सिद्ध करना है : AD =
उपपत्ति : ∆ABC में, ∠A = 90°
तथा AD ⊥ BC
AD2 = BD . DC = BD . BD = BD2 (∵ DC = BD)
⇒ AD = BD =
इति सिद्धम्
प्रश्न 2.
यदि ∆ABC में DE || BC और
हल
प्रश्न 3.
दी गई आकृति में DE || AB है। x का मान ज्ञात कीजिए।
हल
∆ABC में, DE || AB
CE : EB = CD : DA
⇒
⇒ (8x + 9) x = (3x + 4) (x + 3)
⇒ 8x2 + 9x = 3x2 + 9x + 4x + 12
⇒ 8x2 + 9x – 3x2 – 9x – 4x – 12 = 0
⇒ 5x2 – 4x – 12 = 0
⇒ 5x2 – (10 – 6)x – 12 = 0
⇒ 5x2 – 10x + 6x – 12 = 0
⇒ 5x(x – 2) + 6(x – 2) = 0
⇒ (x – 2)(5x + 6) = 0
यदि 5x + 6 = 0 हो, तो x =
तब, यदि x – 2 = 0 हो, तो x = 2
अतः x का मान = 2.
प्रश्न 4.
दी गई आकृति में ABCD एक समचतुर्भुज है तो सिद्ध कीजिए कि 4AB2 = AC2 + BD2
हल
दिया है : ABCD एक समचतुर्भुज है जिसमें AB, BC, CD व DA चतुर्भुज की भुजाएँ हैं AC व BD विकर्ण हैं।
सिद्ध करना है : 4AB2 = AC2 + BD2
उपपत्ति : समचतुर्भुज की भुजाएँ लम्बाई में समान होती हैं और उसके विकर्ण परस्पर समकोण पर एक-दूसरे को अर्धित करते हैं।
AB = BC = CD = DA ……(1)
AO = OC तथा BO = OD
∆AOB, ∆BOC, ∆COD व ∆DOA समकोण त्रिभुज हैं।
समकोण ∆AOB में, ∠AOB = 90°
AB2 = AO2 + BO2
⇒ AB2 =
⇒ AB2 =
⇒ 4AB2 = AC2 + BD2
इति सिद्धम्
प्रश्न 5.
दो समरूप ∆ABC तथा ∆PQR के क्षेत्रफल का अनुपात 9 : 16 है। यदि BC = 4.5 m, तो QR की लम्बाई ज्ञात कीजिए।
हल
दो समरूप त्रिभुजों के क्षेत्रफल, त्रिभुजों की संगत भुजाओं के वर्गों के अनुपात में होते हैं।
अतः QR की लम्बाई = 6.0 cm
प्रश्न 6.
चित्र में, ∆OSR ≅ ∆OPQ एवं SR || PQ यदि OSR = 50° और ∠ROQ = 120° तो ∠QPO का मान ज्ञात कीजिए।
हल
चित्र में, ∆OSR ≅ ∆OPQ एवं SR || PQ, SQ एक ऋजु रेखा है और 120° उससे OR बिन्दु O पर मिलती है, जिससे ∠SOR तथा ∠QOR एक रैखिक युग्म कोण है।
∠SOR + ∠QOR = 180°
⇒ ∠SOR + 120° = 180°
⇒ ∠SOR = 180° – 120° = 60°
तब ∆SOR में, ∠RSO + ∠SOR + ∠ORS = 180°
50° + 60° + ∠ORS = 180°
⇒ ∠ORS = 180° – 50° – 60°
⇒ ∠ORS = 180° – 110°
⇒ ∠ORS = 70°
∵ ∆SOR ~ ∆QPO
∴ ∠ORS = ∠QPO = 70°
∴ ∠QPO = 70°
प्रश्न 7.
आकृति में, AD ⊥ BC है। सिद्ध कीजिए कि AB2 + CD2 = BD2 + AC2
हल
∆ABD में, ∠BDA = 90°,
अत: बौधायन प्रमेय से,
AB2 = BD2 + DA2 ……(1)
तथा इसी प्रकार ∆ADC में,
AC2 = CD2 + DA2
⇒ DA2 = AC2 – CD2
समीकरण (1) में DA2 का मान रखने पर,
AB2 = BD2 + AC2 – CD2
⇒ AB2 + CD2 = BD2 + AC2
इति सिद्धम्
दीर्घ उत्तरीय प्रश्न
प्रश्न 1.
AQ तथा BP एक समकोण त्रिभुज ABC की माध्यिकाएँ हैं तथा त्रिभुज का कोण C समकोण है। सिद्ध कीजिए कि 4(AQ2 + BP2) = 5AB2
हल
दिया है : ∆ABC में ∠C = 90°, त्रिभुज की BP और AQ दो माध्यिकाएँ हैं जो क्रमश: CA को बिन्दु P पर तथा BC को बिन्दु Q पर मिलती
हैं।
सिद्ध करना है : 4(AQ2 + BP2) = 5AB2
उपपत्ति : BP, CA की माध्यिका है।
PC =
⇒ 2PC = CA
⇒ 4PC2 = CA2 ……(1)
AQ, BC की माध्यिका है।
CQ =
⇒ 2CQ = BC
⇒ 4CQ2 = BC2 ………(2)
समकोण त्रिभुज ABC में, AB2 = BC2 + CA2 ……(3)
समकोण त्रिभुज BPC में, BP2 = PC2 + BC2 …….(4)
समकोण त्रिभुज ACQ में, AQ2 = CA2 + CQ2 ………(5)
समीकरण (4) व (5) को जोड़ने पर,
AQ2 + BP2 = PC2 + CQ2 + CA2 + BC2 ……(6)
समीकरण (6) को 4 से गुणा करने पर,
4(AQ2 + BP2) = 4PC2 + 4CQ2 + 4BC2 + 4CA2
⇒ 4(AQ2 + BP2) = CA2 + BC2 + 4BC2 + 4CA2 [समीकरण (1) व (2) से]
⇒ 4(AQ2 + BP2) = 5BC2 + 5CA2
⇒ 4(AQ2 + BP2) = 5(BC2 + CA2)
⇒ 4(AQ2 + BP2) = 5AB2 [समीकरण (3) से]
अत: 4(AQ2 + BP2) = 5AB2
इति सिद्धम्
प्रश्न 2.
आकृति में, ∠ACB = 90° तथा AD ⊥ AB है। सिद्ध कीजिए कि
हल
दिया है : ∆ABD में ∠DAB = 90° तथा AC ⊥ BD
सिद्ध करना है :
उपपत्ति : ∆ABD में, ∠DAB = 90°
∆ABD समकोण त्रिभुज है जिसमें AC ⊥ BD
∆ABC ~ ∆DBA और ∆DAC ~ ∆DRA तथा ∆ABC ~ ∆DAC
∵ ∆ABC ~ ∆DRA
∆ABC तथा ∆DBA की तुलना करने पर,
⇒ AB2 = BC × BD …….(1)
∵ ∆DAC ~ ∆DBA
∴ ∆DAC तथा ∆DBA की तुलना करने पर,
⇒ AD2 = BD × CD …….(2)
समीकरण (1) को (2) से भाग देने पर,
⇒
इति सिद्धम्
0 Comments